Spray Plume Movement as a Function of Atmospheric Stability

Bradley K Fritz

Agricultural Engineer
USDA-ARS Areawide Pest Management Unit
College Station, Texas

Effects of Atmospheric Stability

- Yates et al. (1966)
 - Over 3 times deposition under very stable versus unstable
- Yates et al. (1967)
 - Wind speed dominates in near field
- MacCollom et al. (1986)
 - Greater drift distance and amounts under temperature inversions
- ► Hoffman and Salyani (1996)
 - Higher depositions for nighttime versus daytime applications

Effects of Atmospheric Stability

- ► Bird (1995)
 - Highest drift under relatively high wind speeds coupled with temperature inversions and small droplet spectra
- ► Miller et al. (2000)
 - Atmospheric stability dominates in far field
 - Increased wind speed and stable conditions important factors in higher drift amounts
 - 2 6 times the amount of drift under stable conditions versus unstable conditions

Objectives

- ► Field studies to assess spray drift and deposition under varying atmospheric conditions.
- Use of in-flight instrumentation to measure meteorological parameters and atmospheric stability

Field Study – Preliminary Results

Treatment

- VERY FINE Spray D_{V0.5} of 176 μm
 - ▶ CP-03 at 90° deflection, 0.125" orifice, 40 psi, 150 mph
- 5 gal/acre rate
- 6 foot spray height
- 50 ft swath width
- Spray solution Trition X-100 at 0.1% v/v, and Caracid Brilliant Flavine FFN fluorescent dye at 17 g/acre

Sampling

- Mylar cards (-15 m to 50 m from swath edge)
- Elevated nylon screen (at 5', 10', 15', 20' at multiple downwind distances)
- Spray Time
 - Late afternoon approx. 2 hours before dark

Distribution of Stability Conditions by Time of Day

Field Study Layout

Screen Towers

Meteorological Data

- Monitoring tower and 3-D anemometer used
 - Measured
 - ► Temperature and RH (4 heights)
 - ▶ Wind speed and direction (4 heights)
 - Calculated data
 - Averages and standard deviations
 - Stability metrics (SR, Ri, Classes)
- All data sets were grouped based on wind speed during spray run.
 - Initial statistical analysis did not indicate that other meteorological parameters had any significant effect (including stability effects)
 - ▶ Potential difficulty with temperature profile data
 - Stability steadily decreased as afternoon progressed for all 3 days
 - Not what would be expected
 - Tower near interface of two dissimilar surfaces (concrete runway and grassed field)
 - Wind speed was significant
 - ▶ Three wind speed groupings were created
 - Group effect was also significant

Wind Speed Groupings

Results – Ground Deposition (Mylar)

Results – Airborne Deposition (Screen) 5 ft

Results – Airborne Deposition (Screen) 10 ft

Results – Airborne Deposition (Screen) 15 ft

Results – Airborne Deposition (Screen) 20 ft

Results – Droplet Size (WSP) 10 ft

Results – Droplet Size (WSP) 20 ft

Conclusions

- Increased downwind deposition with increased wind speed (as is expected)
- Larger droplets travel further downwind and higher up at increased wind speeds (also expected)
- Indication of increased airborne concentrations further downwind for reps with Group B wind speeds.
 - Possible cause
 - Reps in Group B tended to be latest in the day (exception Day 1 Reps 1 and 3) and therefore potentially during greater periods of stability.

Areas to be Addressed

- Sample site selection
 - Uniformity of surrounding areas
 - Prevent influence of differing surface characteristics from masking stability effects.
- Sampling screen protocol
 - Examine affects of wind direction on sampling efficiency
- Meteorological monitoring procedures
 - Temperature sounding measurements
 - Methodology for use of in-flight real-time instrumentation for measurements
 - ► AIMMS

In-Flight Real-Time Meteorological Measurement

- Allows for recording of met. data during application.
 - Example
 - ▶ Windrose of met data that occurred during Day 1 replications

In-Flight Real-Time Meteorological Measurement

- Variation of wind speed and direction along a flight line
 - Data taken in 1 second intervals
 - > 220 feet between readings

